3.6: Forced Oscillations and Resonance

In Section 3.4 we derived the differential equation
mz" + ca' + kx = F(t). (1)

We wish now to consider what happens when F(t) = Fycoswt or F(t) =
Fysinwt.

Eguilibrium
position

An example of when this can occur is when
there is a rotating machine component involved
in the mass which can provide a simple har-
monic force. We arrive at the differential equa-
tion

ma” + kx = Fycoswt. (2)

Undamped Forced Oscillations: To study the undamped oscillations under
the influence of the external force F(t) = Fycoswt, we set ¢ = 0 in Equation
(1) and begin with the equation

mx” + kx = Fycoswt (3)

whose complimentary solution is x. = ¢1 cos wot + ¢z sin wot, where wg = \/k/m
is the natural frequency of the mass-spring system. We can also see that
the particular solution is of the form x, = Acoswt, where w is the circular
frequency. Suppose w # wy. (Why?) Taking derivative of z, and plugging
into Equation (2), we get

—mw? coswt + kA coswt = Fy cos wt
so that
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Therefore, the general solution x = z. + ), is given by

F
x(t) = ¢1 coswpt + co sinwot + 20;7”2 cos wt. (5)
Just as in Section 3.4, this becomes
F
z(t) = C cos(wot — a) + # cos wt. (6)



Example 1. (Undamped Forced Oscillations)
Suppose that m = 1, k = 9, Fy = 80 and w = 5 in (2). Find z(¢) if z(0) =
2'(0) = 0.
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Beats:
If (0) = 2’(0) = 0 then the solution to (2) can be arranged as
2F, )

. . 1
(2 — o) 5 (wo — w)tsin 5 (wy + w)t.

We see that if |w — wy| is small we get a rapid oscillation plus a slowing varying
amplitude.

Example 2. When m = 0.1, Fy = 50, wy = 55 and w = 45 in (2), the solution
written as above is given by

x(t) = sin 5t sin 50t

and the solution curve looks as below.
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When wy = w in (2) we see that the complementary and particular solutions
would have the same form. In this case we see the phenomenon of resonance.



Example 3. (Resonance) Suppose that in (2) we have that m = 5 kg and
k = 500 N/m. Then the natural frequency is wy = 10 rad/s. If the flywheel
revolves at the same rate, then the solution curve looks as below.
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More Complex Examples:

Surface
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FIGURE 3.6.6. The washboard road

surface of Example 5.

FIGURE 3.6.7. The “unicycle
madel” of a car,



Damped Forced Oscillations: Consider now the full generality of Equation

(2):

ma” + cx’ + kx = Fy cos wt.

In this case, we can apply the same trig laws as in Section 3.4 to get

x, = C cos(wt — ).

Example 4. Find the transient motion (z.) and the steady periodic oscil-
lations (x,) of a damped mass-and-spring system with m = 1, ¢ = 2, and
k = 26 under the influence of an external force F(t) = 82 cos 4t with 2(0) = 6
and 2/(0) = 0. Also investigate the possibility of practical resonance for this
system; i.e. what values of w maximize the forced amplitude?
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FIGURE 3.6.8. Solutions of the initial value problem in (24) with
xp = —20,—10, 0, 10, and 20.
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FIGURE 3.6.9. Plot of amplitude C
versus external frequency w.

To investigate the possibility of practical resonance in the given system, we substitute
the values m = 1, ¢ = 2, and k = 26 in (21) and find that the forced amplitude at frequency
w is

82
V676 — 4802 + o*

The graph of C(w) is shown in Fig. 3.6.9. The maximum amplitude occurs when

Clow) =

Clw) = —41(d0® —9%6w) _ —1640(w? ~24) Yy
(676 — 48w2 + @*)3/2 (676 — 4802 + w)3/2

Thus practical resonance occurs when the external frequency is @ = ~/24 (a bit less than the
mass-and-spring’s undamped critical frequency of wg = /k/m = +/26). |

Homework. 1-6 (all)



